Antiferromagnetic triangular Ising model: an exact calculation of $P(h)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 163691
(http://iopscience.iop.org/0305-4470/16/15/534)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:33

Please note that terms and conditions apply.

Corrigendum

Antiferromagnetic triangular Ising model: an exact calculation of $\boldsymbol{P}(\boldsymbol{h})$ Choy T C and Sherrington D 1983 J. Phys. A: Math. Gen. 15 L265-8

S_{13} should be $\left(\frac{1}{9}+2 \sqrt{3} / 3 \pi\right)$. A missing factor of π in formula (12), p 373 of Gradshteyn and Ryzhik's (1980) Tables of Integrals, Series and Products (New York: Academic) used for evaluating $I_{4}(h)$ and $I_{6}(h)$ has resulted in numerical errors in the published numbers. The ground state $P(h)$ together with the ferromagnetic case at $T=T_{\mathrm{c}}$ is shown below, normalised for $\Sigma_{h=-6}^{6} P(h)=1$.

		$P(h)$	
h	Ground state $J<0$ Antiferromagnetic	$T=T_{\mathrm{c}}$ Ferromagnetic $J>0$	$T=\infty$
0	0.29002835	0.05922494	0.312500
2	0.22663544	0.07244586	0.234375
4	0.11168652	0.12209928	0.093750
6	0.01666386	0.27584239	0.015625

The minimum at $P(0)$ in the ferromagnetic case is also found in a similar calculation for the square and honeycomb net (M Thorpe, private communications). Details will be published elsewhere.

